Exponential Distribution
   HOME

TheInfoList



OR:

In
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set o ...
and
statistics Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of ...
, the exponential distribution is the probability distribution of the time between events in a
Poisson point process In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...
, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the
gamma distribution In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-square distribution are special cases of the gamma d ...
. It is the continuous analogue of the
geometric distribution In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions: * The probability distribution of the number ''X'' of Bernoulli trials needed to get one success, supported on the set \; * ...
, and it has the key property of being
memoryless In probability and statistics, memorylessness is a property of certain probability distributions. It usually refers to the cases when the distribution of a "waiting time" until a certain event does not depend on how much time has elapsed already ...
. In addition to being used for the analysis of Poisson point processes it is found in various other contexts. The exponential distribution is not the same as the class of
exponential families In probability and statistics, an exponential family is a parametric set of probability distributions of a certain form, specified below. This special form is chosen for mathematical convenience, including the enabling of the user to calculate ...
of distributions. This is a large class of probability distributions that includes the exponential distribution as one of its members, but also includes many other distributions, like the
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
,
binomial Binomial may refer to: In mathematics *Binomial (polynomial), a polynomial with two terms * Binomial coefficient, numbers appearing in the expansions of powers of binomials *Binomial QMF, a perfect-reconstruction orthogonal wavelet decomposition ...
,
gamma Gamma (uppercase , lowercase ; ''gámma'') is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter re ...
, and Poisson distributions.


Definitions


Probability density function

The
probability density function In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can ...
(pdf) of an exponential distribution is : f(x;\lambda) = \begin \lambda e^ & x \ge 0, \\ 0 & x < 0. \end Here ''λ'' > 0 is the parameter of the distribution, often called the ''rate parameter''. The distribution is supported on the interval . If a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
''X'' has this distribution, we write . The exponential distribution exhibits infinite divisibility.


Cumulative distribution function

The
cumulative distribution function In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x. Ev ...
is given by :F(x;\lambda) = \begin 1-e^ & x \ge 0, \\ 0 & x < 0. \end


Alternative parametrization

The exponential distribution is sometimes parametrized in terms of the
scale parameter In probability theory and statistics, a scale parameter is a special kind of numerical parameter of a parametric family of probability distributions. The larger the scale parameter, the more spread out the distribution. Definition If a family o ...
, which is also the mean: f(x;\beta) = \begin \frac e^ & x \ge 0, \\ 0 & x < 0. \end \qquad\qquad F(x;\beta) = \begin 1- e^ & x \ge 0, \\ 0 & x < 0. \end


Properties


Mean, variance, moments, and median

The mean or
expected value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a l ...
of an exponentially distributed random variable ''X'' with rate parameter ''λ'' is given by \operatorname = \frac. In light of the examples given below, this makes sense: if you receive phone calls at an average rate of 2 per hour, then you can expect to wait half an hour for every call. The
variance In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbe ...
of ''X'' is given by \operatorname = \frac, so the
standard deviation In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while ...
is equal to the mean. The moments of ''X'', for n\in\N are given by \operatorname\left ^n\right= \frac. The
central moment In probability theory and statistics, a central moment is a moment of a probability distribution of a random variable about the random variable's mean; that is, it is the expected value of a specified integer power of the deviation of the random ...
s of ''X'', for n\in\N are given by \mu_n = \frac = \frac\sum^n_\frac. where !''n'' is the
subfactorial In combinatorial mathematics, a derangement is a permutation of the elements of a set, such that no element appears in its original position. In other words, a derangement is a permutation that has no fixed points. The number of derangements of ...
of ''n'' The
median In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value. The basic fe ...
of ''X'' is given by \operatorname = \frac < \operatorname where refers to the
natural logarithm The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
. Thus the
absolute difference The absolute difference of two real numbers x and y is given by , x-y, , the absolute value of their difference. It describes the distance on the real line between the points corresponding to x and y. It is a special case of the Lp distance for ...
between the mean and median is \left, \operatorname\left \right- \operatorname\left \right = \frac < \frac = \operatorname in accordance with the median-mean inequality.


Memorylessness

An exponentially distributed random variable ''T'' obeys the relation \Pr \left (T > s + t \mid T > s \right ) = \Pr(T > t), \qquad \forall s, t \ge 0. This can be seen by considering the complementary cumulative distribution function: \begin \Pr\left(T > s + t \mid T > s\right) &= \frac \\ pt &= \frac \\ pt &= \frac \\ pt &= e^ \\ pt &= \Pr(T > t). \end When ''T'' is interpreted as the waiting time for an event to occur relative to some initial time, this relation implies that, if ''T'' is conditioned on a failure to observe the event over some initial period of time ''s'', the distribution of the remaining waiting time is the same as the original unconditional distribution. For example, if an event has not occurred after 30 seconds, the
conditional probability In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occur ...
that occurrence will take at least 10 more seconds is equal to the unconditional probability of observing the event more than 10 seconds after the initial time. The exponential distribution and the
geometric distribution In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions: * The probability distribution of the number ''X'' of Bernoulli trials needed to get one success, supported on the set \; * ...
are the only memoryless probability distributions. The exponential distribution is consequently also necessarily the only continuous probability distribution that has a constant failure rate.


Quantiles

The quantile function (inverse cumulative distribution function) for Exp(''λ'') is F^(p;\lambda) = \frac,\qquad 0 \le p < 1 The quartiles are therefore: *first quartile: ln(4/3)/''λ'' *
median In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value. The basic fe ...
: ln(2)/''λ'' *third quartile: ln(4)/''λ'' And as a consequence the
interquartile range In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread. It is defined as the difference ...
is ln(3)/''λ''.


Kullback–Leibler divergence

The directed
Kullback–Leibler divergence In mathematical statistics, the Kullback–Leibler divergence (also called relative entropy and I-divergence), denoted D_\text(P \parallel Q), is a type of statistical distance: a measure of how one probability distribution ''P'' is different fr ...
in nats of e^\lambda ("approximating" distribution) from e^ ('true' distribution) is given by \begin \Delta(\lambda_0 \parallel \lambda) &= \mathbb_\left( \log \frac\right)\\ &= \mathbb_\left( \log \frac\right)\\ &= \log(\lambda_0) - \log(\lambda) - (\lambda_0 - \lambda)E_(x)\\ &= \log(\lambda_0) - \log(\lambda) + \frac - 1. \end


Maximum entropy distribution

Among all continuous probability distributions with support and mean ''μ'', the exponential distribution with ''λ'' = 1/''μ'' has the largest
differential entropy Differential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy, a measure of average surprisal of a random variable, to continuo ...
. In other words, it is the
maximum entropy probability distribution In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entro ...
for a
random variate In probability and statistics, a random variate or simply variate is a particular outcome of a ''random variable'': the random variates which are other outcomes of the same random variable might have different values ( random numbers). A random ...
''X'' which is greater than or equal to zero and for which E 'X''is fixed.


Distribution of the minimum of exponential random variables

Let ''X''1, …, ''X''''n'' be
independent Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s * Independ ...
exponentially distributed random variables with rate parameters ''λ''1, …, ''λn''. Then \min\left\ is also exponentially distributed, with parameter \lambda = \lambda_1 + \dotsb + \lambda_n. This can be seen by considering the complementary cumulative distribution function: \begin &\Pr\left(\min\ > x\right) \\ = &\Pr\left(X_1 > x, \dotsc, X_n > x\right) \\ = &\prod_^n \Pr\left(X_i > x\right) \\ = &\prod_^n \exp\left(-x\lambda_i\right) = \exp\left(-x\sum_^n \lambda_i\right). \end The index of the variable which achieves the minimum is distributed according to the categorical distribution \Pr\left(X_k = \min\\right) = \frac. A proof can be seen by letting I = \operatorname_\. Then, \begin \Pr (I = k) &= \int_^ \Pr(X_k = x) \Pr(\forall_X_ > x ) \,dx \\ &= \int_^ \lambda_k e^ \left(\prod_^ e^\right) dx \\ &= \lambda_k \int_^ e^ dx \\ &= \frac. \end Note that \max\ is not exponentially distributed, if ''X''1, …, ''X''''n'' do not all have parameter 0.


Joint moments of i.i.d. exponential order statistics

Let X_1, \dotsc, X_n be n
independent and identically distributed In probability theory and statistics, a collection of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent. This property is usua ...
exponential random variables with rate parameter ''λ''. Let X_, \dotsc, X_ denote the corresponding
order statistic In statistics, the ''k''th order statistic of a statistical sample is equal to its ''k''th-smallest value. Together with rank statistics, order statistics are among the most fundamental tools in non-parametric statistics and inference. Importan ...
s. For i < j , the joint moment \operatorname E\left _ X_\right of the order statistics X_ and X_ is given by \begin \operatorname E\left _ X_\right &= \sum_^\frac \operatorname E\left _\right+ \operatorname E\left _^2\right\\ &= \sum_^\frac\sum_^\frac + \sum_^\frac + \left(\sum_^\frac\right)^2. \end This can be seen by invoking the
law of total expectation The proposition in probability theory known as the law of total expectation, the law of iterated expectations (LIE), Adam's law, the tower rule, and the smoothing theorem, among other names, states that if X is a random variable whose expected v ...
and the memoryless property: \begin \operatorname E\left _ X_\right &= \int_0^\infty \operatorname E\left _ X_ \mid X_=x\rightf_(x) \, dx \\ &= \int_^\infty x \operatorname E\left _ \mid X_ \geq x\rightf_(x) \, dx &&\left(\textrm~X_ = x \implies X_ \geq x\right) \\ &= \int_^\infty x \left _\right+_x_\right.html" ;"title="\operatorname E\left _\right+ x \right">\operatorname E\left _\right+ x \rightf_(x) \, dx &&\left(\text\right) \\ &= \sum_^\frac \operatorname E\left _\right+ \operatorname E\left _^2\right \end The first equation follows from the
law of total expectation The proposition in probability theory known as the law of total expectation, the law of iterated expectations (LIE), Adam's law, the tower rule, and the smoothing theorem, among other names, states that if X is a random variable whose expected v ...
. The second equation exploits the fact that once we condition on X_ = x , it must follow that X_ \geq x . The third equation relies on the memoryless property to replace \operatorname E\left X_ \mid X_ \geq x\right/math> with \operatorname E\left _\right+ x.


Sum of two independent exponential random variables

The probability distribution function (PDF) of a sum of two independent random variables is the convolution of their individual PDFs. If X_1 and X_2 are independent exponential random variables with respective rate parameters \lambda_1 and \lambda_2, then the probability density of Z=X_1+X_2 is given by \begin f_Z(z) &= \int_^\infty f_(x_1) f_(z - x_1)\,dx_1\\ &= \int_0^z \lambda_1 e^ \lambda_2 e^ \, dx_1 \\ &= \lambda_1 \lambda_2 e^ \int_0^z e^\,dx_1 \\ &= \begin \dfrac \left(e^ - e^\right) & \text \lambda_1 \neq \lambda_2 \\ pt \lambda^2 z e^ & \text \lambda_1 = \lambda_2 = \lambda. \end \end The entropy of this distribution is available in closed form: assuming \lambda_1 > \lambda_2 (without loss of generality), then \begin H(Z) &= 1 + \gamma + \ln \left( \frac \right) + \psi \left( \frac \right) , \end where \gamma is the
Euler-Mascheroni constant Euler's constant (sometimes also called the Euler–Mascheroni constant) is a mathematical constant usually denoted by the lowercase Greek letter gamma (). It is defined as the limiting difference between the harmonic series and the natural l ...
, and \psi(\cdot) is the
digamma function In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function: :\psi(x)=\frac\ln\big(\Gamma(x)\big)=\frac\sim\ln-\frac. It is the first of the polygamma functions. It is strictly increasing and strict ...
. In the case of equal rate parameters, the result is an
Erlang distribution The Erlang distribution is a two-parameter family of continuous probability distributions with support x \in independent exponential distribution">exponential variables with mean 1/\lambda each. Equivalently, it is the distribution of the tim ...
with shape 2 and parameter \lambda, which in turn is a special case of
gamma distribution In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-square distribution are special cases of the gamma d ...
.


Related distributions

* If ''X'' ~ Laplace(μ, β−1), then , ''X'' − μ, ~ Exp(β). * If ''X'' ~ Pareto(1, λ), then log(''X'') ~ Exp(λ). * If ''X'' ~ SkewLogistic(θ), then \log\left(1 + e^\right) \sim \operatorname(\theta). * If ''Xi'' ~ ''U''(0, 1) then \lim_n \min \left(X_1, \ldots, X_n\right) \sim \operatorname(1) * The exponential distribution is a limit of a scaled
beta distribution In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval , 1in terms of two positive parameters, denoted by ''alpha'' (''α'') and ''beta'' (''β''), that appear as ...
: \lim_ n \operatorname(1, n) = \operatorname(1). * Exponential distribution is a special case of type 3
Pearson distribution The Pearson distribution is a family of continuous probability distributions. It was first published by Karl Pearson in 1895 and subsequently extended by him in 1901 and 1916 in a series of articles on biostatistics. History The Pearson system ...
. * If ''X'' ~ Exp(λ) and ''X'' ~ Exp(λ) then: ** kX \sim \operatorname\left(\frac\right), closure under scaling by a positive factor. ** 1 + ''X'' ~ BenktanderWeibull(λ, 1), which reduces to a truncated exponential distribution. ** ''keX'' ~ Pareto(''k'', λ). ** ''e−X'' ~
Beta Beta (, ; uppercase , lowercase , or cursive ; grc, βῆτα, bē̂ta or ell, βήτα, víta) is the second letter of the Greek alphabet. In the system of Greek numerals, it has a value of 2. In Modern Greek, it represents the voiced labiod ...
(λ, 1). ** ''e'' ~ PowerLaw(''k'', λ) ** \sqrt \sim \operatorname \left(\frac\right), the
Rayleigh distribution In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution for nonnegative-valued random variables. Up to rescaling, it coincides with the chi distribution with two degrees of freedom. The distribut ...
** X \sim \operatorname\left(\frac, 1\right), the
Weibull distribution In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It is named after Swedish mathematician Waloddi Weibull, who described it in detail in 1951, although it was first identified by Maurice Re ...
** X^2 \sim \operatorname\left(\frac, \frac\right) ** . ** \lfloor X\rfloor \sim \operatorname\left(1-e^\right), a
geometric distribution In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions: * The probability distribution of the number ''X'' of Bernoulli trials needed to get one success, supported on the set \; * ...
on 0,1,2,3,... ** \lceil X\rceil \sim \operatorname\left(1-e^\right), a
geometric distribution In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions: * The probability distribution of the number ''X'' of Bernoulli trials needed to get one success, supported on the set \; * ...
on 1,2,3,4,... ** If also ''Y'' ~ Erlang(''n'', λ) orY \sim \Gamma\left(n, \frac\right) then \frac + 1 \sim \operatorname(1, n) ** If also λ ~
Gamma Gamma (uppercase , lowercase ; ''gámma'') is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter re ...
(''k'', θ) (shape, scale parametrisation) then the marginal distribution of ''X'' is Lomax(''k'', 1/θ), the gamma
mixture In chemistry, a mixture is a material made up of two or more different chemical substances which are not chemically bonded. A mixture is the physical combination of two or more substances in which the identities are retained and are mixed in the ...
** λ''X'' − λ''Y'' ~ Laplace(0, 1). ** min ~ Exp(λ1 + ... + λ''n''). ** If also λ = λ then: *** X_1 + \cdots + X_k = \sum_i X_i \sim Erlang(''k'', λ) =
Gamma Gamma (uppercase , lowercase ; ''gámma'') is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter re ...
(''k'', λ−1) = Gamma(''k'', λ) (in (''k'', θ) and (α, β) parametrization, respectively) with an integer shape parameter k. *** ''X'' − ''X'' ~ Laplace(0, λ−1). ** If also ''X'' are independent, then: *** \frac ~ U(0, 1) *** Z = \frac has probability density function f_Z(z) = \frac. This can be used to obtain a
confidence interval In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated ''confidence level''; the 95% confidence level is most common, but other levels, such as 9 ...
for \frac. ** If also λ = 1: *** \mu - \beta\log\left(\frac\right) \sim \operatorname(\mu, \beta), the
logistic distribution Logistic may refer to: Mathematics * Logistic function, a sigmoid function used in many fields ** Logistic map, a recurrence relation that sometimes exhibits chaos ** Logistic regression, a statistical model using the logistic function ** Logit, ...
*** \mu - \beta\log\left(\frac\right) \sim \operatorname(\mu, \beta) *** ''μ'' − σ log(''X'') ~ GEV(μ, σ, 0). *** Further if Y \sim \Gamma\left(\alpha, \frac\right) then \sqrt \sim \operatorname(\alpha, \beta) (
K-distribution In probability and statistics, the generalized K-distribution is a three-parameter family of continuous probability distributions. The distribution arises by compounding two gamma distributions. In each case, a re-parametrization of the usual ...
) ** If also λ = 1/2 then ; i.e., ''X'' has a
chi-squared distribution In probability theory and statistics, the chi-squared distribution (also chi-square or \chi^2-distribution) with k degrees of freedom is the distribution of a sum of the squares of k independent standard normal random variables. The chi-squar ...
with 2 degrees of freedom. Hence: \operatorname(\lambda) = \frac \operatorname\left(\frac \right) \sim \frac \chi_2^2\Rightarrow \sum_^n \operatorname(\lambda) \sim \frac\chi_^2 * If X \sim \operatorname\left(\frac\right) and Y \mid X ~ Poisson(''X'') then Y \sim \operatorname\left(\frac\right) (
geometric distribution In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions: * The probability distribution of the number ''X'' of Bernoulli trials needed to get one success, supported on the set \; * ...
) * The
Hoyt distribution The Nakagami distribution or the Nakagami-''m'' distribution is a probability distribution related to the gamma distribution. The family of Nakagami distributions has two parameters: a shape parameter m\geq 1/2 and a second parameter controlling ...
can be obtained from exponential distribution and arcsine distribution * The exponential distribution is a limit of the ''κ''-exponential distribution in the \kappa = 0 case. * Exponential distribution is a limit of the κ-Generalized Gamma distribution in the \alpha = 1 and \nu = 1 cases: *: \lim_ p_\kappa(x) = (1+\kappa\nu)(2\kappa)^\nu \frac \frac x^\exp_\kappa(-\lambda x^\alpha) = \lambda e^ Other related distributions: *
Hyper-exponential distribution In probability theory, a hyperexponential distribution is a continuous probability distribution whose probability density function of the random variable ''X'' is given by : f_X(x) = \sum_^n f_(x)\;p_i, where each ''Y'i'' is an exponentially ...
– the distribution whose density is a weighted sum of exponential densities. *
Hypoexponential distribution In probability theory the hypoexponential distribution or the generalized Erlang distribution is a continuous distribution, that has found use in the same fields as the Erlang distribution, such as queueing theory, teletraffic engineering and more ...
– the distribution of a general sum of exponential random variables. *
exGaussian distribution In probability theory, an exponentially modified Gaussian distribution (EMG, also known as exGaussian distribution) describes the sum of independent normal and exponential random variables. An exGaussian random variable ''Z'' may be expressed as ...
– the sum of an exponential distribution and a
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
.


Statistical inference

Below, suppose random variable ''X'' is exponentially distributed with rate parameter λ, and x_1, \dotsc, x_n are ''n'' independent samples from ''X'', with sample mean \bar.


Parameter estimation

The
maximum likelihood In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed stat ...
estimator for λ is constructed as follows. The
likelihood function The likelihood function (often simply called the likelihood) represents the probability of random variable realizations conditional on particular values of the statistical parameters. Thus, when evaluated on a given sample, the likelihood funct ...
for λ, given an
independent and identically distributed In probability theory and statistics, a collection of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent. This property is usua ...
sample ''x'' = (''x''1, …, ''x''''n'') drawn from the variable, is: L(\lambda) = \prod_^n\lambda\exp(-\lambda x_i) = \lambda^n\exp\left(-\lambda \sum_^n x_i\right) = \lambda^n\exp\left(-\lambda n\overline\right), where: \overline = \frac\sum_^n x_i is the sample mean. The derivative of the likelihood function's logarithm is: \frac \ln L(\lambda) = \frac \left( n \ln\lambda - \lambda n\overline \right) = \frac - n\overline\ \begin > 0, & 0 < \lambda < \frac, \\ pt = 0, & \lambda = \frac, \\ pt < 0, & \lambda > \frac. \end Consequently, the
maximum likelihood In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed stat ...
estimate for the rate parameter is: \widehat_\text = \frac = \frac This is an
unbiased estimator In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called ''unbiased''. In stat ...
of \lambda, although \overline an unbiased MLE estimator of 1/\lambda and the distribution mean. The bias of \widehat_\text is equal to B \equiv \operatorname\left left(\widehat_\text - \lambda\right)\right= \frac which yields the bias-corrected maximum likelihood estimator \widehat^*_\text = \widehat_\text - B. An approximate minimizer of
mean squared error In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between ...
(see also:
bias–variance tradeoff In statistics and machine learning, the bias–variance tradeoff is the property of a model that the variance of the parameter estimated across samples can be reduced by increasing the bias in the estimated parameters. The bias–variance di ...
) can be found, assuming a sample size greater than two, with a correction factor to the MLE: \widehat = \left(\frac\right) \left(\frac\right) = \frac This is derived from the mean and variance of the
inverse-gamma distribution In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to ...
, \mbox(n, \lambda).


Fisher information

The
Fisher information In mathematical statistics, the Fisher information (sometimes simply called information) is a way of measuring the amount of information that an observable random variable ''X'' carries about an unknown parameter ''θ'' of a distribution that model ...
, denoted \mathcal(\lambda), for an estimator of the rate parameter \lambda is given as: \mathcal(\lambda) = \operatorname \left \lambda\right= \int \left(\frac \log f(x;\lambda)\right)^2 f(x; \lambda)\,dx Plugging in the distribution and solving gives: \mathcal(\lambda) = \int_^ \left(\frac \log \lambda e^\right)^2 \lambda e^\,dx = \int_^ \left(\frac - x\right)^2 \lambda e^\,dx = \lambda^. This determines the amount of information each independent sample of an exponential distribution carries about the unknown rate parameter \lambda.


Confidence intervals

The 100(1 − α)% confidence interval for the rate parameter of an exponential distribution is given by: \frac< \frac < \frac which is also equal to: \frac < \frac < \frac where is the
percentile In statistics, a ''k''-th percentile (percentile score or centile) is a score ''below which'' a given percentage ''k'' of scores in its frequency distribution falls (exclusive definition) or a score ''at or below which'' a given percentage falls ...
of the chi squared distribution with ''v'' degrees of freedom, n is the number of observations of inter-arrival times in the sample, and x-bar is the sample average. A simple approximation to the exact interval endpoints can be derived using a normal approximation to the distribution. This approximation gives the following values for a 95% confidence interval: \begin \lambda_\text &= \widehat\left(1 - \frac\right) \\ \lambda_\text &= \widehat\left(1 + \frac\right) \end This approximation may be acceptable for samples containing at least 15 to 20 elements.


Bayesian inference

The
conjugate prior In Bayesian probability theory, if the posterior distribution p(\theta \mid x) is in the same probability distribution family as the prior probability distribution p(\theta), the prior and posterior are then called conjugate distributions, and th ...
for the exponential distribution is the
gamma distribution In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-square distribution are special cases of the gamma d ...
(of which the exponential distribution is a special case). The following parameterization of the gamma probability density function is useful: \operatorname(\lambda; \alpha, \beta) = \frac \lambda^ \exp(-\lambda\beta). The
posterior distribution The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. From an epistemological perspective, the posterior p ...
''p'' can then be expressed in terms of the likelihood function defined above and a gamma prior: \begin p(\lambda) &\propto L(\lambda) \Gamma(\lambda; \alpha, \beta) \\ &= \lambda^n \exp\left(-\lambda n\overline\right) \frac \lambda^ \exp(-\lambda \beta) \\ &\propto \lambda^ \exp(-\lambda \left(\beta + n\overline\right)). \end Now the posterior density ''p'' has been specified up to a missing normalizing constant. Since it has the form of a gamma pdf, this can easily be filled in, and one obtains: p(\lambda) = \operatorname(\lambda; \alpha + n, \beta + n\overline). Here the
hyperparameter In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to mo ...
''α'' can be interpreted as the number of prior observations, and ''β'' as the sum of the prior observations. The posterior mean here is: \frac.


Occurrence and applications


Occurrence of events

The exponential distribution occurs naturally when describing the lengths of the inter-arrival times in a homogeneous
Poisson process In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...
. The exponential distribution may be viewed as a continuous counterpart of the
geometric distribution In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions: * The probability distribution of the number ''X'' of Bernoulli trials needed to get one success, supported on the set \; * ...
, which describes the number of
Bernoulli trial In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is c ...
s necessary for a ''discrete'' process to change state. In contrast, the exponential distribution describes the time for a continuous process to change state. In real-world scenarios, the assumption of a constant rate (or probability per unit time) is rarely satisfied. For example, the rate of incoming phone calls differs according to the time of day. But if we focus on a time interval during which the rate is roughly constant, such as from 2 to 4 p.m. during work days, the exponential distribution can be used as a good approximate model for the time until the next phone call arrives. Similar caveats apply to the following examples which yield approximately exponentially distributed variables: * The time until a radioactive
particle decay In particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the ''final state'') must each be less massive than the original, ...
s, or the time between clicks of a
Geiger counter A Geiger counter (also known as a Geiger–Müller counter) is an electronic instrument used for detecting and measuring ionizing radiation. It is widely used in applications such as radiation dosimetry, radiological protection, experimental ph ...
* The time it takes before your next telephone call * The time until default (on payment to company debt holders) in reduced-form credit risk modeling Exponential variables can also be used to model situations where certain events occur with a constant probability per unit length, such as the distance between
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mi ...
s on a DNA strand, or between roadkills on a given road. In
queuing theory Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the ...
, the service times of agents in a system (e.g. how long it takes for a bank teller etc. to serve a customer) are often modeled as exponentially distributed variables. (The arrival of customers for instance is also modeled by the
Poisson distribution In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known co ...
if the arrivals are independent and distributed identically.) The length of a process that can be thought of as a sequence of several independent tasks follows the
Erlang distribution The Erlang distribution is a two-parameter family of continuous probability distributions with support x \in independent exponential distribution">exponential variables with mean 1/\lambda each. Equivalently, it is the distribution of the tim ...
(which is the distribution of the sum of several independent exponentially distributed variables).
Reliability theory Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability describes the ability of a system or component to function under stated conditions for a specifi ...
and reliability engineering also make extensive use of the exponential distribution. Because of the ''
memoryless In probability and statistics, memorylessness is a property of certain probability distributions. It usually refers to the cases when the distribution of a "waiting time" until a certain event does not depend on how much time has elapsed already ...
'' property of this distribution, it is well-suited to model the constant
hazard rate Survival analysis is a branch of statistics for analyzing the expected duration of time until one event occurs, such as death in biological organisms and failure in mechanical systems. This topic is called reliability theory or reliability analys ...
portion of the
bathtub curve The bathtub curve is widely used in reliability engineering and deterioration modeling. It describes a particular form of the hazard function which comprises three parts: *The first part is a decreasing failure rate, known as early failures. *Th ...
used in reliability theory. It is also very convenient because it is so easy to add failure rates in a reliability model. The exponential distribution is however not appropriate to model the overall lifetime of organisms or technical devices, because the "failure rates" here are not constant: more failures occur for very young and for very old systems. In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, if you observe a
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
at a fixed
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
and
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
in a uniform
gravitational field In physics, a gravitational field is a model used to explain the influences that a massive body extends into the space around itself, producing a force on another massive body. Thus, a gravitational field is used to explain gravitational phenome ...
, the heights of the various molecules also follow an approximate exponential distribution, known as the
Barometric formula The barometric formula, sometimes called the ''exponential atmosphere'' or ''isothermal atmosphere'', is a formula used to model how the pressure (or density) of the air changes with altitude. The pressure drops approximately by 11.3 pascals pe ...
. This is a consequence of the entropy property mentioned below. In
hydrology Hydrology () is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and environmental watershed sustainability. A practitioner of hydrology is calle ...
, the exponential distribution is used to analyze extreme values of such variables as monthly and annual maximum values of daily rainfall and river discharge volumes. :The blue picture illustrates an example of fitting the exponential distribution to ranked annually maximum one-day rainfalls showing also the 90%
confidence belt In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated ''confidence level''; the 95% confidence level is most common, but other levels, such as 9 ...
based on the binomial distribution. The rainfall data are represented by
plotting position Plot or Plotting may refer to: Art, media and entertainment * Plot (narrative), the story of a piece of fiction Music * ''The Plot'' (album), a 1976 album by jazz trumpeter Enrico Rava * The Plot (band), a band formed in 2003 Other * ''Plot'' ...
s as part of the
cumulative frequency analysis Cumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The phenomenon may be time- or space-dependent. Cumulative frequency is also called ''frequency of non-exceedance ...
. In operating-rooms management, the distribution of surgery duration for a category of surgeries with no typical work-content (like in an emergency room, encompassing all types of surgeries).


Prediction

Having observed a sample of ''n'' data points from an unknown exponential distribution a common task is to use these samples to make predictions about future data from the same source. A common predictive distribution over future samples is the so-called plug-in distribution, formed by plugging a suitable estimate for the rate parameter ''λ'' into the exponential density function. A common choice of estimate is the one provided by the principle of maximum likelihood, and using this yields the predictive density over a future sample ''x''''n''+1, conditioned on the observed samples ''x'' = (''x''1, ..., ''xn'') given by p_(x_ \mid x_1, \ldots, x_n) = \left( \frac1 \right) \exp \left( - \frac \right) The Bayesian approach provides a predictive distribution which takes into account the uncertainty of the estimated parameter, although this may depend crucially on the choice of prior. A predictive distribution free of the issues of choosing priors that arise under the subjective Bayesian approach is p_(x_ \mid x_1, \ldots, x_n) = \frac, which can be considered as # a frequentist
confidence distribution In statistical inference, the concept of a confidence distribution (CD) has often been loosely referred to as a distribution function on the parameter space that can represent confidence intervals of all levels for a parameter of interest. Histori ...
, obtained from the distribution of the pivotal quantity /; # a profile predictive likelihood, obtained by eliminating the parameter ''λ'' from the joint likelihood of ''x''''n''+1 and ''λ'' by maximization; # an objective Bayesian predictive posterior distribution, obtained using the non-informative
Jeffreys prior In Bayesian probability, the Jeffreys prior, named after Sir Harold Jeffreys, is a non-informative (objective) prior distribution for a parameter space; its density function is proportional to the square root of the determinant of the Fisher info ...
1/''λ''; # the Conditional Normalized Maximum Likelihood (CNML) predictive distribution, from information theoretic considerations. The accuracy of a predictive distribution may be measured using the distance or divergence between the true exponential distribution with rate parameter, ''λ''0, and the predictive distribution based on the sample ''x''. The
Kullback–Leibler divergence In mathematical statistics, the Kullback–Leibler divergence (also called relative entropy and I-divergence), denoted D_\text(P \parallel Q), is a type of statistical distance: a measure of how one probability distribution ''P'' is different fr ...
is a commonly used, parameterisation free measure of the difference between two distributions. Letting Δ(''λ''0, , ''p'') denote the Kullback–Leibler divergence between an exponential with rate parameter ''λ''0 and a predictive distribution ''p'' it can be shown that \begin \operatorname_ \left \Delta(\lambda_0\parallel p_) \right&= \psi(n) + \frac - \log(n) \\ \operatorname_ \left \Delta(\lambda_0\parallel p_) \right&= \psi(n) + \frac - \log(n) \end where the expectation is taken with respect to the exponential distribution with rate parameter , and is the digamma function. It is clear that the CNML predictive distribution is strictly superior to the maximum likelihood plug-in distribution in terms of average Kullback–Leibler divergence for all sample sizes .


Random variate generation

A conceptually very simple method for generating exponential
variate In probability and statistics, a random variate or simply variate is a particular outcome of a ''random variable'': the random variates which are other outcomes of the same random variable might have different values ( random numbers). A random ...
s is based on
inverse transform sampling Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, Smirnov transform, or the golden ruleAalto University, N. Hyvönen, Computational methods in inverse probl ...
: Given a random variate ''U'' drawn from the uniform distribution on the unit interval , the variate T = F^(U) has an exponential distribution, where ''F'' is the quantile function, defined by F^(p)=\frac. Moreover, if ''U'' is uniform on (0, 1), then so is 1 − ''U''. This means one can generate exponential variates as follows: T = \frac. Other methods for generating exponential variates are discussed by Knuth
Donald E. Knuth Donald Ervin Knuth ( ; born January 10, 1938) is an American computer scientist, mathematician, and professor emeritus at Stanford University. He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of computer sc ...
(1998). ''
The Art of Computer Programming ''The Art of Computer Programming'' (''TAOCP'') is a comprehensive monograph written by the computer scientist Donald Knuth presenting programming algorithms and their analysis. Volumes 1–5 are intended to represent the central core of com ...
'', volume 2: ''Seminumerical Algorithms'', 3rd edn. Boston: Addison–Wesley. . ''See section 3.4.1, p. 133.''
and Devroye.Luc Devroye (1986).
Non-Uniform Random Variate Generation
'. New York: Springer-Verlag. . ''Se
chapter IX
section 2, pp. 392–401.''
A fast method for generating a set of ready-ordered exponential variates without using a sorting routine is also available.


See also

*
Dead time For detection systems that record discrete events, such as particle and nuclear detectors, the dead time is the time after each event during which the system is not able to record another event. An everyday life example of this is what happens when ...
– an application of exponential distribution to particle detector analysis. * Laplace distribution, or the "double exponential distribution". * Relationships among probability distributions * Marshall–Olkin exponential distribution


References


External links

*
Online calculator of Exponential Distribution
{{DEFAULTSORT:Exponential Distribution Continuous distributions Exponentials Poisson point processes Conjugate prior distributions Exponential family distributions Infinitely divisible probability distributions Survival analysis